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Objectives 
 
The four objectives of this study are all related to expanding multi-model seasonal 
prediction capabilities. First, we document the ENSO predictive capability of the NCAR 
CCSM3.0 and more recently CCSM3.5. This model is a natural candidate for inclusion in 
the U.S. operational multi-model prediction strategy (Higgins, personal communication 
2006). Second, we document how CCSM3.0 (and CCSM3.5) can be combined with the 
current operational CFS to produce intraseasonal to interannual forecasts that are superior 
to either model alone. Third, we demonstrate how an ocean initial state using a particular 
ocean component (i.e., the Geophysical Fluid Dynamics Laboratory Modular Ocean 
Model; MOM) can be used in a coupled system that uses a different ocean component 
model (i.e., the Parallel Ocean Program; POP). This demonstration has the potential to 
simplify and broaden the multi-model prediction strategy, because institutions that do not 
have an independent ocean data assimilation system can more easily participate in 
prediction research. Fourth, we seek to show how an improved land initialization strategy 
impacts the forecast skill. Kirtman and Min (2009) describe in detail the results from the 
first three objectives in terms of SST predictions in the eastern Pacific. Paolino et al. 
present results showing impact of land surface initialization. 
 
Results and Accomplishments 
 
ENSO Forecast Skill CCSM3.0 vs. CCSM3.5 
 
Figure 1 shows a specific example from forecasts initialized in January 1982. The plot 
shows Time–longitude equatorial Pacific SSTA cross sections for each CCSM3.0 and 
CCSM3.5. The first two columns correspond to the CCSM3.0 forecasts with (a) the 
observational estimate and (b) the ensemble mean. (c)–(h) Various CCSM3 forecast are 
denoted. Similarly, the last two columns [also labeled (a)–(h)] correspond to the 
CCSM3.5 forecast with (a) the observational estimate and (b) the ensemble mean. (c)–(h) 
The various CCSM3 forecasts are denoted. This particular case is an excellent example of 
how the improvement made to CCSM3.5 impact the systematic behavior of the forecasts. 
For example, typically CCSM3.0 predicts that the SSTA develops too early compared 
with observations and extend too far into the western Pacific. Both of these problems are 
significantly reduced with the CCSM3.5 forecasts. 
 
Figure 2 shows the correlation coefficient for all retrospective forecasts initialized 
January 1982-1999 for CCSM3.0, CCSM3.5, CFS and the multi-model combination of 
all three models. For show lead time all three models indicate similar correlation with the 
observations, at longer leads the CCSM3.0 forecast are better correlated with the 
observations. More detailed statistical analysis indicates that multi-model forecast is 



statistically indistinguishable from the best model while which model is best model 
appears to be a function of lead time and initial month. Moreover, the multimodel 
forecast does appear to produce correlations that are significantly higher than the worst 
model, which again is a function of lead time and initial month. It is this fact that leads us 
to the conclusion that the multimodel improves the ‘‘overall’’ forecast skill and 
emphasizes how the multimodel ensemble can conceptually be thought of as smoothing 
out the vagaries in skill associated with individual model differences. Figures 3 and 4 
show maps  of anomaly correlation as a function of lead time. 
 
Impact of Land Surface Initialization 
 
The land surface initial conditions are initialized as follows: soil moisture and soil 
temperature are derived from the Second Global Soil Wetness Project (GSWP-2) daily 
data. GSWP-2 reports only soil wetness, so the initial soil moisture for a particular layer 
and column is considered to be either all liquid or all ice, depending on the corresponding 
soil temperature at that point. Profile data for different column types are restricted in the 
same manner as in the Common Land Model (CLM), which is the land surface 
component of the CCSM. We first compute the normalized anomalies of the GSWP-2 
soil moisture from a 10-year climatology, and then combine those anomalies with the 
mean statistics from a 30-year CLM run, after a 100-year spin-up. 
 
The GSWP-2 soil data are reported for six layers, from top to bottom, with depths of 10, 
20, 20, 20, 30, and 50 cm, for a total depth of 1.5 m. The CLM soil column consists of 10 
layers, and is 3.4 meters deep, with the bottom two layers spanning 2.0 meters. The initial 
soil data are created by imposing the GSWP-2 anomaly for the layer containing the depth 
of the CLM layer on the CLM climatology. Where the CLM layer overlaps two GSWP-2 
layers, weighted anomalies are used. The bottom CLM layer is set to model climatology, 
and layer nine is relaxed to climatology. Initial soil data south of 60°S are set equal to the 
model climatology.  
 
Initial values for the CLM vegetation variables are taken from a seven-day CAM only 
spin-up forecast, using the same atmospheric initialization as used in the fully coupled 
forecast. Initial snow depth and snow temperature are taken from daily values of the 
ERA-40 reanalysis. We have used the same formulation as the CLM in assigning initial 
snow depth for up to five snow layers. Snow is assigned to each column type according 
to the proper CLM formulation. Snow water equivalent is computed using the CLM 
formulation, after computing snow density from a mean of the ERA-40 skin temperature 
and 2 meter temperature. 
 
In comparison with a previous set of forecast experiments which had initialized only the 
observed ocean state, there is firm evidence that we produce a much better representation 
of the interannual variability of the soil surface. The seasonal forecast of soil moisture is 
far superior, due in part to the ability of the CCSM3.0 to persist large-scale anomalies 
present in the initial soil state. The superior land surface forecast leads to a superior 
seasonal forecast of surface temperature. There is little evidence of an improved forecast 
of precipitation over land; although there is a suggestion of an improvement in the 



forecast over ocean. The improvement in the 2m surface temperature is shown in Fig. 5 
and described in more detail in Paolino et al. (2010). 
 
Intraseaonal Reforecasts 
 
The focus of this part of the project is to assess the skill of a multi-model ensemble for 
intraseasonal prediction. In this phase of the project, the NCEP/Climate Forecast System 
(CFS) re-forecast experiments are used together with re-forecast experiments performed 
by the CO-Is (B. Kirtman and D. Paolino) using the NCAR/Community Climate System 
Model version 3.5 (CCSM3.5).  The skill of the individual model forecasts and a multi-
model ensemble forecast, formed by combing the two models, is assessed for a 
commonly used index of the Madden-Julian Oscillation (MJO). 
 
The CCSM3.5 intraseasonal re-forecast experiments were initialized from 21-30 April, 
and 22-31 October for the years 1981-1999 and run for 1-year. The CFS re-forecast 
experiments (Saha et al. 2005) were initialized on the 1-3, 9-13, 19-23, and last two days 
of each month for the years 1981-2005 and run for 9-months.  The overlapping years and 
initial dates between the two sets of re-forecasts are used to assess the skill in forecasting 
the MJO index.  There are nine overlapping initial dates (Apr 21, 22, 29, 30; Oct 22, 23, 
30, 31) over 19 overlapping years (1981-1999).   
 
The real-time multivariate MJO index (RMM) of Wheeler and Hendon (2004) is the 
metric for the MJO that has been adopted by the Clivar MJO Working Group and is being 
used for their multi-model ensemble prediction efforts (Gottshalck 2008).  The RMM 
index is determined from a combined empirical orthogonal function (CEOF) analysis of 
equatorially averaged zonal winds (200 hPa and 850 hPa) and outgoing longwave 
radiation (OLR).  The index consists of the first two principal component time series of 
the combined EOFs and are in quadrature, describing an oscillation (Figure 6, top 
panels).  The model fields are projected onto the observed CEOFs to calculate the model 
forecasted RMM indices.  It is noted that for RMM1 > 0 (RMM1 < 0), the convection 
associated with the MJO is in the Maritime Continent (Western Hemisphere) regions.  
For RMM2 > 0 (RMM2 < 0), the maximum in convection is located in the Indian Ocean 
(Western Pacific).  This index has been calculated for the CFS and CCSM. 
 
The skill of RMM1 and RMM2 are compared for the individual models and a multi-
model ensemble combination of the two. The multi-model ensemble is produced by 
averaging the RMM values of the two individual models.  The average anomaly 
correlation skill for all of the overlapping cases as a function of lead-time is shown in 
Figure 6 (left panels) for RMM1 (top) and RMM2 (bottom).  The skill of the individual 
models (CFS in red; CCSM in blue) is shown with the skill of the 2-member multi-model 
ensemble (black).  Clearly, one of the models has significantly better skill than the other.  
The CFS anomaly correlations fall below 0.5 around day-14 for RMM1 and around day-
10 for RMM2, while the CCSM skill is above 0.5 up to about day-25 for RMM1 and day-
20 for RMM2.  The relatively poor skill by the CFS is likely due to a well-known issue 
related to the initialization of the CFS re-forecasts (A. Vintzileos, personal 



communication).  It is noted that the two-member MME has similar skill to the CCSM 
and appears to have slightly better skill at longer lead-times for RMM1.   
 
The skill comparisons described above are not completely fair comparisons since the skill 
of the individual models is shown for only a single ensemble member, while the MME is 
shown for two ensemble members.  Therefore, all possible combinations of 2-member 
lagged average ensembles are generated for the overlapping cases.  For example, 
ensembles are made by averaging the individual model forecasts initialized on Apr 21 
and 22 for the same verifying calendar dates.  For the multi-model ensemble, a lagged 
ensemble is produced for the case of Apr 21 from the CCSM and Apr 22 from the CFS 
and also Apr 21 from the CFS and Apr 22 from the CCSM. This is done for all possible 
combinations of 2-member lagged ensembles from the two models.  The average 
anomaly correlation skill of these ensemble forecasts is shown in Figure 6 (right panels) 
for RMM1 (top) and RMM2 (bottom).  Not surprisingly, the 2-member lagged average 
ensemble for each of the individual models has better skill than the single-member 
versions shown in the left panels.   With this more realistic comparison, the skill of the 
multi-model ensemble is generally less skillful than the CCSM with the exception of 
lead-times greater than 22-days for RMM1.  The key point to derive from these results is 
that the multi-model ensemble is able to provide skillful forecasts despite the fact that one 
of the models has exceptionally poor skill.  Although the less skillful model could have 
been identified a priori in these cases, this may not always be true.  
 
Highlights 
 

• Intraseasonal skill in CFS and CCSM 
• Improvements in land surface temperatures associated with land initialization 
• Multi-model forecast skill 
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Future Work 
1.  Forecast experiments with CCSM4.0 and CFSRR initial conditions. 
2.  Assess multi-model skill of larger sample of CCSM runs. 
3. Assess multi-model skill of intraseaonal temperature and precipitation anomalies 
associated with the MJO (by projecting onto the RMM index) and 2 and 3-week forecasts 
of weekly anomalies.  This will provide skill assessment in two ways: (a) in terms of the 
RMM index and (b) in terms of operational forecasts on these timescales (ie weekly 
forecasts) which must consider a larger set of interactions and phenomenon than just the 
MJO.   
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Figure 1: The plot shows Time–longitude equatorial Pacific SSTA cross sections for each 
CCSM3.0 and CCSM3.5. The first two columns correspond to the CCSM3.0 forecasts 
with (a) the observational estimate and (b) the ensemble mean. (c)–(h) Various CCSM3 
forecast are denoted. Similarly, the last two columns [also labeled (a)–(h)] correspond to 
the CCSM3.5 forecast with (a) the observational estimate and (b) the ensemble mean. 
(c)–(h) The various CCSM3 forecasts are denoted. In this case the forecast were 
initialized in January 1982. 



 
Figure 2: Nino3.4 (top) correlation coefficient for ensemble mean forecasts initialized in 
January. 
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Figure 6 Average anomaly correlation skill of the RMM index (RMM1 top panels; 
RMM2 bottom panels) as a function of lead time for a set of re-forecast experiments with 
April and October initial conditions for the years 1981-1999 from the CFS (red), CCSM 
(blue), and a multi-model ensemble of the CFS+CCSM (black).  Left panels show 
theskill of the individual models with a single ensemble member and the two-member 
MME. Right panels show the skill of two-member lagged average ensembles for the 
individual models and the MME. 
 


